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Abstract 
The deployment of the Unified Accelerator Library 

(UAL) environment on the parallel cluster is presented. 
The approach is based on the Message-Passing Interface 
(MPI) library and the Per1 adapter that allows one to 
control and mix together the existing conventional UAL 
components with the new MPI-based parallel extensions. 
In the paper, we provide timing results and describe the 
application of the new environment to the SNS Ring 
complex beam dynamics studies, particularly, simulations 
of several physical effects, such as space charge, field 
errors, fringe fields, and others. 

1 MOTIVATION 
The high level of beam loss in future high intensity proton 
accelerator complexes introduces a serious challenge for 
accelerator physicists To make some realistic predictions 
at 10-4 level, one has to deal with a combination of 
different physical effects and dynamic processes. These 
effects can be evaluated and corrected independently with 
a set of general-purpose accelerator codes and specialized 
programs. However, the accurate modelling of necessary 
low-level beam losses requires the simultaneous 
consideration of several effects in a single scenario. The 
open architecture of the Unified Accelerator Libraries [l] 
addresses this task. In the UAL, accelerator algorithms 
are implemented as replaceable modules exchanging data 
via Common Accelerator Objects (Element, Bunch, 
Twiss, etc.). Thus for the Spallation Neutron Source 
(SNS) Ring study, a UAL-based simulation environment 
has been developed [2]. This environment includes 
injections painting, field errors, misalignments, fringe 
fields, and space charge effect. The space-charge effect 
has the largest impact on halo growth in the SNS 
accumulator ring. Then preliminary working points and 
injection schemes have been determined only by the 
space charge beam dynamics. For example, the working 
point with the splitting of tunes by a half-unit (Qx, Qy) = 
(6.3, 5.8) gave promising results based on numerical 
simulations. However, adding magnet errors and 
misalignments in this optimised scenario dramatically 
increased beam loss to unacceptable level. After detailed 
study [3], it was confirmed that such resonant behaviour 
was induced by a combined effect of the space charge and 
skew-quadrupole errors. The space charge depressed the 
tunes and made particles trapped into the sum resonance 
(Qx+Qy=12) driven by skew- quadrupole field. This study 
demonstrated the importance of integrated effects. Also, 
it showed performance limitation of the existing 
simulation environment for complex studies and necessity 
of the UAL parallel extension. 

*Work performed under the auspices 
of the U.S. Department of Energy. 

2 SOLUTION 

The original UAL environment haa been implemented 
using the two-language approach (C++ and Perl). The 
UAL internal infrastructure and all numerical algorithms 
are implemented as compiled C+t shared libraries. The 
integration of these libraries is provided via the Per1 
scripts. This scheme is designed to facilitate selecting and 
implementing the most appropriate accelerator 
approaches and supporting task-specific requirements. We 
have. also found the same architecture can be perfectly 
fitted to the parallel environment based on the Message- 
Passing Interface (MPI) [4]. 

2.1 Embarrassingly Parallel Computations 

Many accelerator simulation models can be represented 
by the combination of single-particle and multi-particle 
approaches. The single-particle beam dynamics suggests 
no communication between the separate processes and is 
classified as embarrassingly parallel. For this category of 
UAL applications, the MPI executables can be 
represented by the original sequential Per1 scripts with 
few additional lines for initialisation and finalizing of the 
MPI processes (see Table 1). 

Table 1: A set off Per1 commands for the embarrassingly 
parallel simulation scenario. 

The Per1 interface to the two MPI C functions (1 and 9 
commands, Table 1) is implemented as a Per1 Short-MPI 
module based on the standard Per1 XS mechanism used 
for embedding all UAL C-l-+ classes. This approach not 



only preserves the sequential Per1 scripts but also does not 
require recompilation of existing C++ shared libraries. 

2.2 Communication 

Development of collective space-charge effects and 
time consuming numerical algorithms (e.g. calculation of 
high-order Taylor maps) on parallel computers requires 
the integration of the additional communication 
mechanism in serial procedures. In the UAL environment, 
the parallel version of the original algorithm is 
implemented as a new C++ library that can be mixed 
together with other UAL sequential and/or parallel 
components. It enables one to encapsulate all 
communication procedures in a single place and reuse the 
existing simulation environment. 

In the UAL, the space charge effect is currently 
developed through the ORBIT module [5]. ORBIT 
implements the 2.5D approach in which the space charge 
effect is modelled by the thin 2D transverse kick 
multiplied by the factor proportional to the longitudinal 
bunch density. The calculation of the transverse kick is 
based on the Particle-In-Cell (PIC) method employing the 
convolution algorithm for finding 2D forces. The flow 
logic and the strategy taken to parallelize this calculation 
are shown in Table 2. 

Table 2: Parallel flow logic for the transverse space 

According to Table 2, the serial and parallel versions for 
the transverse space charge calculations are different only 
in steps 3 and 5. Thus the new C+ class has been derived 
Tom the original one with overriding few methods. The 
data exchange between different CPU’s is provided by the 
special optimised MPI function, MPI-Allreduce. All 
communications occur on the C++ level keeping the Per1 
API unchangeable. The user still has access to the Per1 
constructor of the new class and is able to integrate it into 
the previous embarrassingly parallel simulation scenario 
(command 5, Table 1). 

3 TIMING RESULTS 
The simulation environment was deployed on the 

Linux workstation cluster ,including six dual i586 CPUs 
In our injection-painting scenario, the number of macro- 
particles is the sum of an arithmetic progression, 
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(512 kBytes L2 cache, 512 MB RAM) and the 100 Mb/s 
Fast Ethernet switch. The MPICH 1.2.1 library installed 
under the Red Hat 7.0 Linux operating system provided 
the communication between different CPU’s. For the 
timing purposes, the typical SNS ring simulation scenario 
can be described by the following major characteristics: 

Table 3: Parameters of the SNS Ring simulation scenario. 

Value 1 

670 
670 
1000 
200 

128x128 

ORBIT[S] 
TEAPOTl-61 

Parameter 
Number of 

Lattice elements 
Space charge (SC) nodes 
Injectionturns 
Macro-particles injected per turn 
PIC.bins 

Integrator of 
Space charge (SC) nodes 
Lattice elements 

The number of injected macro-particles is determined by 
the beam loss level. According to Table 4,200 K macro- 
particles have been selected as an optimal quantity that 
gives the satisfactory accuracy in the l.Oe-3 - l.Oe-4 
beam loss range. 

Table 4: The loss level estimation for the 200 K macro- 
particle scenario. 

] Loss ] Number of lost ] Error of the loss level 1 

The total time of the one-turn simulation is linearly 
proportional to the number of propagated particles (see 
Figure 1) 

Figure 1. The parallel timing results for the one-turn 
simulation for the SNS lattice. 
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therefore, the total time of the serial calculation can be For the considered case, the optimal number of CPUs is 
presented as about 10 that corresponds to the capacity of our Linux 

t serial =Z;n,j*Nf+T;B*Nt (1) cluster. Because of the dual CPU effect we employ 5 
CPUs for each task. It gives us the 70% parallel efficiency 

where 2, and up are parameters of the timing model, and and the calculation time decreases from 80 to 23 hours. 

N, is the number of turns. For the case of parallel 5 SUMMARY 
simulation the formula (1) can be rewritten to take into 
account that the injected macro-particles are scattered The parallel extension of the UAL 1 .O environment has 

throughout CPUs been developed using Message-Passing Interface (MPI) 

Z,nhj * Nf 
and deployed on the SNS Linux cluster. It gives 

tll = NC,, + (‘S + cNCPIJ - ‘1 “~)~t c2) 
physicists the affordable time for the SNS Ring complex 
beam dynamics &l&s. 

In the formula (2) we suppose that the communication 6 ACKNOWLEDGEMENT 
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